## Go back to

.....The site is being constantly updated, so come back to check new updates.....

If you find any bug or need any improvements in solution report it here

# Cochran q test calculator

Cochran's Q test is a non-parametric statistical test. It is used to test 2 or more treatment have equal effectiveness or not. In Cochran's Q test every input value is either 0 or 1.Every step is provided as if it is solved by hand. You can learn how to calculate a Cochran's Q test by submitting any sample values.

INSTRUCTION: Use ',' or new line to separate between values

## You can see a sample solution below. Enter your data to get the solution for your question

$$\displaylines{---}$$
$$\displaylines{ \mathbf{\color{Green}{The\;null\;and\;alternative\;hypothesis\;are:}} \\ \\ \mathbf{\color{Green}{H_{0}:\;the\;treatments\;are\;equally\;effective.}} \\ \\ \mathbf{\color{Green}{H_{a}:\;there\;is\;a\;difference\;in\;effectiveness\;between\;treatments.}} \\ \\ \\ \\ }$$

$$Treatment\;1$$
$$Treatment\;2$$
$$Treatment\;3$$
$$Block\;total$$
$$Block\;1$$
$$1$$
$$0$$
$$1$$
$$2$$
$$Block\;2$$
$$0$$
$$0$$
$$0$$
$$0$$
$$Block\;3$$
$$1$$
$$1$$
$$0$$
$$2$$
$$Block\;4$$
$$0$$
$$1$$
$$1$$
$$2$$
$$Block\;5$$
$$1$$
$$1$$
$$0$$
$$2$$
$$Treatment\;total$$
$$3$$
$$3$$
$$2$$
$$8$$
$$\displaylines{}$$
$$\displaylines{K\;=\;Total\;no\;of\;treatment\;=\; 3 \\ \\ N\;=\;Total\;=\; 8 \;(From\;table) \\ \\ \mathbf{\color{Green}{First\;we\;have\;to\;find\;}} \sum_{j=1}^{k}(X_{j}-\frac{N}{k})^{2} \\ \\ \mathbf{\color{Green}{Where\;X_{j}\;is\;jth\;Treatment\;total}} \\ \\ }$$
$$X_{j}$$
$$\frac{N}{k}$$
$$X_{j}-\frac{N}{k}$$
$$(X_{j}-\frac{N}{k})^{2}$$
$$3$$
$$2.666667$$
$$0.333333$$
$$0.111111$$
$$3$$
$$2.666667$$
$$0.333333$$
$$0.111111$$
$$2$$
$$2.666667$$
$$-0.666667$$
$$0.444445$$
$$Total$$


$$0.666667$$
$$\displaylines{}$$
$$\displaylines{ \mathbf{\color{Green}{From\;table\;we\;get\;value\;of\;}} \sum_{j=1}^{k}(X_{j}-\frac{N}{k})^{2} \mathbf{\color{Green}{\;as\;}} \mathbf{\color{Red}{0.666667}} \\ \\ \mathbf{\color{Green}{Now,\;we\;have\;to\;find\;}} \sum_{i=1}^{b}X_{i}*(k-X_{i}) \\ \\ \mathbf{\color{Green}{Where\;X_{i}\;is\;ith\;Block\;total}} \\ \\ }$$
$$X_{i}$$
$$k$$
$$k-X_{i}$$
$$X_{i}*(k-X_{i})$$
$$2$$
$$3$$
$$1$$
$$2$$
$$0$$
$$3$$
$$3$$
$$0$$
$$2$$
$$3$$
$$1$$
$$2$$
$$2$$
$$3$$
$$1$$
$$2$$
$$2$$
$$3$$
$$1$$
$$2$$



$$8$$
$$\displaylines{}$$
$$\displaylines{ \mathbf{\color{Green}{From\;table\;we\;get\;value\;of\;}} \sum_{i=1}^{b}X_{i}*(k-X_{i}) \mathbf{\color{Green}{\;as\;}} \mathbf{\color{Red}{8}} \\ \\ \mathbf{\color{Green}{The\;Cochran's\;Q\;test\;statistic\;=\;T\;=\;}} k*(k-1) \frac{\sum_{j=1}^{k}(X_{j}-\frac{N}{k})^{2}}{\sum_{i=1}^{b}X_{i}*(k-X_{i})} \\ \\ \Rightarrow 3* 2 * \frac{0.666667}{8} \\ \\ \Rightarrow 0.5 \\ \\ df\;=\; k-1= 2 \\ \\ p\;value\;for\;T\;=\;0.5\;and\;df\;=\;2\;is\; p= 0.778801 \\ \\ p-value\;is\;more\;than\;\alpha \\ \\ So\;There\;is\;not\;enough\;evidence\;to\;reject\;H_{0}\; }$$