Go back to


Newly added calculators




.....The site is being constantly updated, so come back to check new updates.....

If you find any bug or need any improvements in solution report it here

Crypto fear and greed index

Mann Whitney U test calculator


Mann-Whitney U test is a type of nonparametric test which use rank for test. Both U and Z are considered as test statistic for the Mann-Whitney U test. Every step is provided like it is solved by hand. You can learn how to calculate a Mann-Whitney U test by submitting any sample values. U statistic and the p-value is calculated and shown below

INSTRUCTION: Use ',' or new line to separate between values

You can see a sample solution below. Enter your data to get the solution for your question

Powered by ZingChart
$$ \displaylines{---} $$
$$ \displaylines{ \mathbf{\color{Green}{H_{0}:The\;two\;populations\;are\;equal}} \\ \\ \mathbf{\color{Green}{H_{a}:H_{0}\;is\;false}} \\ \\ } $$
$$ Sample\;1 $$
$$ Sample\;2 $$
$$ 1 $$
$$ 1 $$
$$ 2 $$
$$ 3 $$
$$ 3 $$
$$ 4 $$
$$ 4 $$
$$ 4 $$
$$ 5 $$
$$ 3 $$
$$ - $$
$$ 7 $$
$$ - $$
$$ 4 $$
$$ \displaylines{} $$
$$ \displaylines{\\ \\ \mathbf{\color{Green}{Now\;we\;have\;to\;create\;rank\;of\;each\;value}} \\ \\ \mathbf{\color{Green}{If\;2\;or\;more\;values\;are\;equal.\;Take\;average\;and\;give\;equal\;rank}} \\ \\ } $$
$$ Values $$
$$ Sample $$
$$ rank $$
$$ 1 $$
$$ Sample\;1 $$
$$ 1.5 $$
$$ 2 $$
$$ Sample\;1 $$
$$ 3.0 $$
$$ 3 $$
$$ Sample\;1 $$
$$ 5.0 $$
$$ 4 $$
$$ Sample\;1 $$
$$ 8.5 $$
$$ 5 $$
$$ Sample\;1 $$
$$ 11.0 $$
$$ 1 $$
$$ Sample\;2 $$
$$ 1.5 $$
$$ 3 $$
$$ Sample\;2 $$
$$ 5.0 $$
$$ 4 $$
$$ Sample\;2 $$
$$ 8.5 $$
$$ 4 $$
$$ Sample\;2 $$
$$ 8.5 $$
$$ 3 $$
$$ Sample\;2 $$
$$ 5.0 $$
$$ 7 $$
$$ Sample\;2 $$
$$ 12.0 $$
$$ 4 $$
$$ Sample\;2 $$
$$ 8.5 $$
$$ \displaylines{} $$
$$ \displaylines{ \mathbf{\color{Green}{Now\;replace\;original\;value\;with\;rank}} \\ \\ } $$
$$ $$
$$ Sample\;1 $$
$$ Sample\;2 $$
$$ $$
$$ 1.5 $$
$$ 1.5 $$
$$ $$
$$ 3.0 $$
$$ 5.0 $$
$$ $$
$$ 5.0 $$
$$ 8.5 $$
$$ $$
$$ 8.5 $$
$$ 8.5 $$
$$ $$
$$ 11.0 $$
$$ 5.0 $$
$$ $$
$$ - $$
$$ 12.0 $$
$$ $$
$$ - $$
$$ 8.5 $$
$$ R_{i} $$
$$ 29.0 $$
$$ 49.0 $$
$$ n_{i}\; $$
$$ 5 $$
$$ 7 $$
$$ \displaylines{} $$
$$ \displaylines{ \mathbf{\color{Green}{Where,\;R_{i}\;is\;sum\;of\;all\;ranks\;in\;a\;sample}} \\ \\ \mathbf{\color{Green}{n_{i}\;is\;total\;number\;of\;values\;in\;a\;treatment}} \\ \\ U_{1} = R_{1}- \left\{\frac{n_{1}(n_{1}+1)}{2} \right\} \\ \\ \Rightarrow 29.0 - \left\{\frac{5(5+1)}{2} \right\} \\ \\ \Rightarrow 14.0 \\ \\ U_{2} = R_{2}- \left\{\frac{n_{2}(n_{2}+1)}{2} \right\} \\ \\ \Rightarrow 49.0 - \left\{\frac{7(7+1)}{2} \right\} \\ \\ \Rightarrow 21.0 \\ \\ U\;=\;minimum\;of\;U_{1},U_{2} \\ \\ \Rightarrow min \left\{14.000000,21.000000 \right\} \\ \\ \Rightarrow 14.0 \\ \\ \mu = \frac{n_{1}*n_{2}}{2} \\ \\ \Rightarrow \frac{5*7}{2} \\ \\ \Rightarrow 17.5 \\ \\ \sigma = \sqrt{\frac{n_{1}*n_{2}*(n_{1}+n_{2}+1)}{12} } \\ \\ \Rightarrow \sqrt{\frac{5*7*(5+7+1)}{12} } \\ \\ \Rightarrow 6.157651 \\ \\ Z= \frac{U-\mu+C}{\sigma} \\ \\ \mathbf{\color{Green}{C\;is\;continuity\;correction,}} \\ \\ \mathbf{\color{Green}{when\;U\;>\;\mu:\;C\;=\;-0.5,\;when\;U\;<\;\mu:\;C\;=\;0.5}} \\ \\ Z= \frac{14.000000-17.500000+0.500000}{6.157651} \\ \\ \Rightarrow -0.487199 \\ \\ \mathbf{\color{Green}{From\;z\;table\;we\;get\;p}} \\ \\ p= 0.626117 } $$