## Go back to

.....The site is being constantly updated, so come back to check new updates.....

If you find any bug or need any improvements in solution report it here

# Coefficient of Regression with p value online calculator

INSTRUCTION: Use ',' or new line to separate between values

## You can see a sample solution below. Enter your data to get the solution for your question

$$\displaylines{---}$$
$$\displaylines{First\;we\;have\;to\;find\;mean\;of\;x\;values \\ \\ Mean = \frac{\sum_{i=1}^{n}x_{i}}{n} \\ \\ \,=\frac{2+4+6+7+8}{5} \\ \\ \,=\frac{27}{5} \\ \\ Second\;we\;have\;to\;find\;mean\;of\;y\;values \\ \\ Mean = \frac{\sum_{i=1}^{n}y_{i}}{n} \\ \\ \,=\frac{2+4+9+7+4}{5} \\ \\ \,=\frac{26}{5} \\ \\ }$$
$$No$$
$$x_{i}$$
$$y_{i}$$
$$(x_{i} - \bar{x})*(y_{i} - \bar{y})$$
$$(x_{i} - \bar{x})^2$$
$$(y_{i} - \bar{y})^2$$
$$1$$
$$2$$
$$2$$
$$10.88$$
$$11.56$$
$$10.24$$
$$2$$
$$4$$
$$4$$
$$1.68$$
$$1.96$$
$$1.44$$
$$3$$
$$6$$
$$9$$
$$2.28$$
$$0.36$$
$$14.44$$
$$4$$
$$7$$
$$7$$
$$2.88$$
$$2.56$$
$$3.24$$
$$5$$
$$8$$
$$4$$
$$-3.12$$
$$6.76$$
$$1.44$$
$$Total$$
$$27$$
$$26$$
$$14.6$$
$$23.2$$
$$30.8$$
$$\displaylines{}$$
$$\displaylines{R= \frac{\sum_{i=1}^{n}(x_{i} - \bar{x})(y_{i} - \bar{y})}{ \left[\left [\sum_{i=1}^{n}(x_{i} - \bar{x})^{2} \right ]\left [\sum_{i=1}^{n}(y_{i} - \bar{y})^{2} \right ] \right]} \\ \\ From\;the\;table\;total\;we\;will\;get\;numerator\;and\;denominator \\ \\ \Rightarrow \frac{14.6}{ \left[\left [23.2 \right ]\left [30.8 \right ] \right]} \\ \\ = \frac{14.6}{ \left[714.5599999999998 \right]} \\ \\ = \mathbf{\color{Red}{0.546177}} \\ \\ n= 5 \\ \\ t= \frac{r \left[n-2 \right]}{ \left[1-r^2 \right]} \\ \\ \Rightarrow \frac{0.546177* \left[5-2 \right]}{ \left[1-0.546177^2 \right]} \\ \\ \Rightarrow \mathbf{\color{Red}{1.129331}} \\ \\ p= 0.34090141 }$$